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LEITER TO THE EDITOR 

General solutions of large- n renormalisation group 
equations 

D D Vvedensky 
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK 

Received 3 January 1984 

Abstract. We solve the recently obtained large-n differential renormalisation-group 
equations for the Ginsburg-Landau-Wilson and time-dependent Ginsburg-Landau models. 
We determine the fixed points of our solutions and make brief comparisons with solutions 
determined previously from generating functions of nonlinear scaling fields. 

The large-n limit of the renormalisation-group ( RG) recursion relations has been 
extensively studied in both the static (Ma 1973,1974,1976) and dynamical (SzCpfalusy 
and TC1 1980a, b) settings. Although much effort has been directed towards determin- 
ing and characterising fixed points of the RG transformation, the existence of generating 
functions for nonlinear scaling fields (Ma 1974) has facilitated the construction of 
approximate global solutions of the large-n recursion relations (Zannetti and Di Castro 
1977, SzCpfalusy and TCl 1980b). On the other hand, differential formulations of the 

RG (Wegner and Houghton 1973, Wilson and Kogut 1974, Vvedensky et al 1983) 
generally provide the most suitable framework for the study of global RG trajectories 
(Nicoll et a1 1975), particularly in the large-n limit where the differential RG (DRG) 
transformations become quasi-linear partial differential equations (Wegner and Hough- 
ton 1973, Nicoll er a1 1976 Busiello er a1 1981, 1983, Vvedensky 1984). In this letter 
we present general solutions of large-n DRG equations for the Ginsburg-Landau- 
Wilson (GLW) model and the time-dependent Ginsburg-Landau (TDGL) model with 
relaxational dynamics. We briefly compare these exact solutions with those obtained 
from generating functions of nonlinear scaling fields (Zannetti and Di Castro 1977, 
SzCpfalusy and TCl 1980b) but we save more detailed comparison with earlier work 
for a future paper. 

We begin by considering an isotropic d-dimensional system ( d  > 2) characterised 
by an n-component order parameter I,$(x), i = 1, .  . . , n and with the usual reduced 
GLW Hamiltonian: 

X = dx[(V4)’+ H (  ~,b~) ]  (1) I 
where 

and where $’ = 4 * 4. Defining H‘( +’) = dH/d(  $’) and x = (C12/Nc, where N, = 
n S , / 2 ( d - 2 ) ( 2 ~ ) ~  and S,  is the surface area of a unit d-sphere, the large-n DRG 
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equation is given in terms of t ( x )  = H'(xN,)  (Busiello et a1 1981, Vvedensky 1984): 

(3) a t / a l =  2 t+(2 -  d)[x- 1 / ( 1 +  t ) ] ( a t / a x )  

subject to the initial condition 

and to the critical fixed-point equation (Busiello et aI 1981) 

where t * ( x )  = lim( I + m)t( I ,  x)  and 2 F l ( a ,  p ;  y ;  z )  is the usual hypergeometric function 
(Gradshteyn and Ryzhik 1965). 

The general solution to (3)-(5) is easily determined by the method of characteristics 
(Courant and Hilbert 1962) and may be written in the implicit form 

where in view of (4) 9 is determined by the power series expansion 
m 

%(z)  = 1 a,,?'. 
r = O  

(7) 

The general solution (6), (7) has the following properties. 
(i) The expansion coefficients a, in (7) are determined by the initial conditions 

(4). Thus, for any choice of the a,, (6) is an exact solution of (3). For trajectories 
on the critical surface ( t (  I ,  1 )  = 0) we have that a. = 0. 

(ii) There are two critical fixed points of (7), the Gaussian fixed point t* = 0 and 
the spherical fixed point (9, as well as a non-critical fixed point t*+m, the infinite 
Gaussian fixed point (Nicoll el a1 1975). 

(iii) There are several formal similarities between the general solution (6),  (7) and 
the exact solution obtained by Zannetti and Di Castro (1977), from generating functions 
of nonlinear scaling fields. However, while (6) is an exact solution of (3)  even if only 
a finite subset of the {a,} are non-vanishing, the corresponding exact solution in the 
representation of Zannetti and Di Castro (1977) necessarily involves an infinite number 
of terms. Evidently the representation (6) is the more appropriate for building general 
solutions to (3) by including successively more terms in (7). 

For the TDGL model we begin with the generalised Langevin equation 

$1 ( x t )  = -r(x)[aR/ 84, ( x t ) I  + T i ( x t )  (8) 
where R is given by (1) and (2), r is a transport coefficient, and the n-component 
stochastic term q has a Gaussian white-noise spectrum. Introducing the field c$ 
conjugate to q, the generalised action for the process (8) is given by (SzCpfalusy and 
Ti1 1980a) 

d t [ i ~ . ( V 2 1 C I + r - ' ~ ) + r - l i ~ . i ~ + A ( I C r .  +,ic$. + ) I  (9) 
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where 

Defining A; ( J I  - JI, it#J - J I )  = aA/a(i+ * J I )  and A;( JI JI, i+ - J I )  = aA/a( JI J I ) ,  and 
introducing the variables x = i+ - JI( d + z - 2)/ ( d  - 2)Nc and y = JI - JI /  N,, 
the large-n dynamical DRG equations are expressed in terms of ti(x, y ) =  
A l [ x ( d - 2 ) N , / ( d + z - 2 ) , N c y ] ,  i =  1 ,2  (Busiello er af 1983, Vvedensky 1984): 

arilai = A,ti+(2-d- z ) [x+F( t l ,  tz)l(ati/ax)+(2-d)[y- G(f l ,  t2)](ari/ay) (11) 

(12) 

where 

F(t1, h) = (1 + tAG(t1, f , ) ,  G (  t l ,  t 2 )  = [( 1 + t1)’ - 2t2]-1’2 

with A I  =2 ,  Az=2+z  and z = 4  (resp. 2) if the order parameter is conserved (resp. 
not conserved). The initial conditions are determined in analogy with (4): 

and the fixed-point condition has been determined by SzCpfalusy and TCI (1980a). In 
the case when the initial action is determined from (8),  we have that only the uzP,,(O) 
and uzp,zp(0) are non-vanishing. 

Although the general solution to (11)-(13) may in principle be obtained by the 
method of characteristics (Courant and Hilbert 1962), a much simpler and more direct 
procedure is to construct a general solution in analogy to (6): 

+ f ( t , ,  t , ) , ( 2 + z ) ( y - l ) t y d ) ’ ( 2 + ’ )  +g(t1, t z ) )  (14) ti = e’i’gi(2xt\2-d-‘)/2 

where the Si are specified by 
m r  

gi(z1, z2)= c c ai;rsZ;-sZ; 
r = O  s=O 

and we choose f and g to be solutions of 

with the boundary conditions 

(17) f (tl, 0) = 0, g(0,O) = 0. 

The solutions to (16) and (17) may be written in the form 

f(t1, t 2 )  =A1(2-d-z)t(12-d-’”A~ dsS-1S2-d-‘ [F(SAItl, s A 2 t 2 ) -  13 

(18) 
I,’ 

g(t1, f 2 )  = AZ(2- d)t$2-d)’A2 lo1 dss-’s2-d[l-G(sAltl, s%,)]. 
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Our general solution (14)-( 18) has the following properties. 
(i) The expansion coefficients are determined by the initial conditions (13). 

The condition t2(0, y)  = 0 (SzCpfalusy and TCl 1980a) requires that a2,rr = 0 for all r. 
Moreover, for trajectories on the critical surface, where t l ( O ,  1) = 0, we must have 

(ii) The non-trivial fixed point of (14)-( 18) is determined by the coupled equations 
a1,oo = 0. 

J o  

which are equivalent to the fixed-point equations obtained by SzCpfalusy and TC1 
(1980a) under the transformation s -$ s-'. 

(iii) As in the case of our solution (6), the general solution (14)-(18) is a much 
more convenient representation than that obtained from generating functions of 
nonlinear scaling fields (Szkpfalusy and T61 1980b). 

arbitrary 
function for each ti results from the fact that the large-n RG equations are first-order 
quasi-linear partial differential equations. This in turn is a direct result of the ordering 
of the variables, namely, 4 = O( n )  and ulP = O( nl-P) in the static case (Ma 1973) and 
similarly in the dynamical case (SzCpfalusy and TCl 1980a). On the other hand, the 
ordering of Nicoll et a1 (1976), based upon a slightly different interpretation of the 
large- n limit, yields a second-order quasi-linear equation with the same critical indices 
as (3). The relationship between these two large-n forms of the RG will be discussed 
in a future paper. 

Finally, we should like to point out that exact differential formulations of real-space 
RG transformations for the two-dimensional triangular Ising model (Hilhorst et a1 
1978, 1979) and the d-dimensional Gaussian model (Yamazaki et a1 1980) also yield 
systems of coupled quasi-linear first-order equations. An interesting feature of these 
equations is that they resemble classical equations of motion, which is a point of view 
that has been pursued by Busiello et a1 (1983) for the system (1 1). General solutions 
of these real-space DRG equations would be a useful complement to the general 
solutions presented here, though their determination appears not to be straightforward. 

The possibility of constructing general solutions involving only one 
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